ПAmIBIA UחIVERSITY
OF SCIEПCE AПD TECHחOLOGY
Faculty of Health, Applied Sciences \&Natural Resources
Department of Mathematics and Statistics

QUALIFICATION : Bachelor of Technology: Accounting and Finance, Advanced Diploma in the Theory of Accounting, Bachelor of Accounting and Diploma in Accounting and Finance	
QUALIFICATION CODE: 23BACF ;07BACP; O6BDAF; 07ADTA	LEVEL: 5
COURSE: QUANTITATIVE METHODS	COURSE CODE: QTM511S
SESSION: June 2022	PAPER: THEORY
DURATION: 3 Hours	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	Mrs. H.Y. Nkalle; Mrs. A. Sakaria; Dr. J. Ongala; Dr. D. Ntirampeba; Prof. A.S. Eegunjobi
MODERATOR:	Dr. D.B. Gemechu

| INSTRUCTIONS |
| :--- | :--- |
| 1. Answer ALL the questions. |
| 2. Write clearly and neatly. |
| 3. Number the answers clearly. |

PERMISSIBLE MATERIALS

1. Non-Programmable Calculator without the cover

ATTACHMENTS
2. Formula Sheet

THIS QUESTION PAPER CONSISTS OF 5 PAGES (Including this front page)

Question 1

If Yvonne lends $N \$ 4500$ to Golda at 10% p.a. and Golda lends the same sum to Tida at 11.5% p.a., then the gain of Golda in a period of 4 years is?

Question 2

Mr. Nkalle invested an amount of $N \$ 20,900$ divided in two different schemes A and B at the simple interest rate of 9% p.a. and 8% p.a, respectively. If the total amount of simple interest earned in 2 years is $N \$ 3508$, what was the amount invested in Scheme B?

Question 3

If you start a bank account with $\mathrm{N} \$ 15,000$ and your bank compounds the interest monthly at an interest rate of 9\% p.a, how much money do you have at the year's end?
(Assume that you do not add or withdraw any money to/from the account).

Question 4

Milly took a loan of N $\$ 900$ with simple interest for as many years as the rate of interest. If she paid $\mathrm{N} \$ 324$ as interest at the end of the loan period, what was the rate of interest?

Question 5

$N \$ 1000$ is placed in an account at 4% compounded annually for 2 years. It is then withdrawn at the end of the two years and placed in another bank at the rate of 5% compounded semi annually for 4 years. What is the balance in the second account after the 4 years?

Question 6

If Jacob takes out a discounted loan with a face value of $N \$ 5000$ for 6 months from a lender who charges a 9.5% discount rate, what is the discount, and how much money does Jacob receive?

Question 7

A machine costing N\$200 000 has effective life of 7 years and its scrap value is $N \$ 30000$. What amount should the company deposit annually into a sinking fund earning 5\% per annum so that it can replace the machine after its useful life? Assume that a new machine will cost $N \$ 300000$ after 7 years. [7]

Question 8

Find the effective interest rate equivalent to a nominal rate of 10% compounded monthly.

Question 9

9.1 Nam Water recently surveyed a sample of employees to determine how far they lived from their corporate headquarters. The results are shown below.

Distance (in Km)	Number of days
0 up to 5	4
5 up to 10	15
10 up to 15	27
15 up to 20	18
20 up to 25	6

9.1.1 Compute and interpret the modal distance.
9.1.2 Find the minimum distance associated with the 25% of employees living further away from Nam Water headquarter.
9.1.3 Compute the interquartile range.

Question 10

A used cars spare parts company that specialises in imported cars has recorded its ordered and cost of screens for its three different screes. The screens are classified as Front, side, and rear.

	2015		2017	
Cartridge	Unit price $($ N\$ $)$	Quantity ordered	Unity price	Quantity ordered
Front	4500	24	6500	36
Side	2450	37	4600	44
Rear	6500	12	7850	14

10.1. Construct a quantity index to reflect the overall change in quantities of screens ordered for the period 2015-2017. Use the Paasche approach. Interpret your index.
10.2. Calculate the unweighted aggregate price index for 2017 on 2015 as base year. Interpret your index.

Question 11

The quarterly visitors of a large tourist site have been recorded for four years. These data are listed here

Year	Quarter	Visitors (in 1000)
1999	Winter	117
	Spring	80.7
	Summer	129.6
	Fall	76.1
2000	Winter	118.6
	Spring	82.5
	Summer	121.4
	Fall	77.0
2001	Winter	114
	Spring	84.3
	Summer	119.9
	Fall	75.0
2002	Winter	120.7
	Spring	79.6
	Summer	130.7
	Fall	69.6

Compute the 4-period centered moving average for the quarterly visitors.

Question 12

Solve the following inequality

$$
\begin{equation*}
\frac{3}{4 x+3} \leq \frac{2}{3} \leq \frac{2}{x+5} . \tag{8}
\end{equation*}
$$

Question 13

13.1. Researchers at Namibia University of Science and Technology (NUST) have determined that children under 2 years old who sleep with the light on have a 36% chance of becoming myopic before they are 16. Children who sleep in darkness have a 21% chance of becoming myopic. A survey indicated that 28% of children under 2 sleeps with some light on. Find the probability that child under 16 is myopic.
13.2. What is the term used to describe two events whose union is the same as the sample space? [2]

Question 14

Define the following terminologies as applied in index numbers
14.1 Laspeyres Index [2]
14.2 Index Number
[3]
14.3 Simple Index Number
[2]

End of exam paper
Total marks: 100

Formula(s) sheet

$$
I=p r t
$$

$$
A=P(1+r t)
$$

$$
t=\frac{N-1}{r} \text { for } N \geq 2
$$

$$
D=A d t
$$

$$
P=A(1-d t)
$$

$$
D=A-P
$$

$$
r_{e f f}=\left(1+\frac{r}{m}\right)^{m}-1
$$

$$
A=P\left(1+\frac{r}{m}\right)^{m t}
$$

$$
r=\frac{d}{1-d t}
$$

$$
r_{e f f}=\frac{r}{1-r t}
$$

$$
\begin{aligned}
d & =\frac{r}{1+r t} \\
t & =\frac{\log A-\log P}{m \log \left(1+\frac{r}{m}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& t=\frac{\log 2}{m \log \left(1+\frac{r}{m}\right)} \\
& s_{n}=R\left[\frac{(1+i)^{n}-1}{i}\right] \\
& A_{n}=R\left[\frac{1-(1+i)^{-n}}{i}\right] \\
& \text { paasche }=\left[\frac{\sum_{i=1}^{n}\left(p_{1} \times q_{1}\right)}{\sum_{i=1}^{n}\left(p_{0} \times q_{1}\right)}\right] \times 100 \\
& \text { paasche }=\left[\frac{\sum_{i=1}^{n}\left(p_{1} \times q_{1}\right)}{\sum_{i=1}^{n}\left(p_{1} \times q_{0}\right)}\right] \times 100 \\
& \text { Laspeyers }=\left[\frac{\sum_{i=1}^{n}\left(p_{1} \times q_{0}\right)}{\sum_{i=1}^{n}\left(p_{0} \times q_{0}\right)}\right] \times 100 \\
& \text { Laspeyers }=\left[\frac{\sum_{i=1}^{n}\left(p_{0} \times q_{1}\right)}{\sum_{i=1}^{n}\left(p_{0} \times q_{0}\right)}\right] \times 100 \\
& s_{x}^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\frac{\sum_{i=1}^{n} x_{i}{ }^{2}-n \bar{x}^{2}}{n-1} \\
& s_{x}^{2}=\frac{\sum_{i=1}^{n} f_{i}\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\frac{\sum_{i=1}^{n} f_{i} x_{i}{ }^{2}-n \bar{x}^{2}}{n-1}
\end{aligned}
$$

$$
\begin{aligned}
& M_{k}=I+\frac{h}{f}\left(\frac{k n}{4}-F\right) \\
& M_{o}=l_{M_{o}}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times h \\
& =I_{M_{0}}+\frac{f_{1}-f_{0}}{\left(f_{1}-f_{0}\right)+\left(f_{1}-f_{2}\right)} \\
& M_{d}=I_{M_{d}}+\frac{h}{f}\left(\frac{n}{2}-F\right) \\
& \bar{x}=\frac{\sum_{i=1}^{n} f_{i} x_{i}}{\sum_{i=1}^{k} f_{i}}
\end{aligned}
$$

$$
\begin{aligned}
& P(B \backslash A)=\frac{P(A \cap B)}{P(A)} \\
& b=\frac{n \sum x y-\sum x \sum y}{n \sum x^{2}-\left(\sum x\right)^{2}}
\end{aligned}
$$

$$
a=\frac{\sum y-b \sum x}{n}
$$

$$
b=\frac{\sum x y}{\sum x^{2}}
$$

$$
\begin{aligned}
& a=\frac{\sum y}{n} \\
& \bar{x}=\frac{\sum x_{i}}{n}
\end{aligned}
$$

$$
s_{x}=\sqrt{s_{x}^{2}}
$$

$$
C V=\frac{s_{x}}{\bar{x}} \times 100
$$

